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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1208

OPTIMAL FILTERING AND LINEAR PREDICTICN APPLIED
TO A MIDCOURSE NAVIGATION SYSTEM
FOR THE CIRCUMLUNAR MISSION

By John D. McLean, Stanley F. Schmidt,
and Leonard A. McGee

SUMMARY

A midcourse navigation system for the circumlunar mission has been
designed and simulated on a digital computer. The spacecraft’s actual
position and velocity are estimated by means of the optimal filter de-
scribed in NASA TN D-1205. On-board optical measurements of the
subtended earth and moon angles and the angular positions of the earth
and moon centers relative to an on-board reference system are assumed
as the basic measurements. Linear prediction is then utilized to
compute the corrective velocity impulse necessary to reduce the estimated
position deviation at the end point to zero for a fixed time of arrival.

The mission is divided into two phases, outbcund and return. The
objective of the outbound phase is to arrive at a prescribed perilune
point at a fixed time. Terminal conditions at this time are taken then
as initial conditions for the return flight to a prescribed perigee
point in the center of the earth's re-entry corridor.

The results of a digital computer simulation of the navigation
system are presented. The simulation of the trajsctory is three-
dimensional and includes the gravitational effects of the earth (through
the second harmonic term) the moon, and the sun, and random errors in
injection conditions, optical measurements, and application of correc-
tive velocity impulses.

The effects of variations in the root-mean-sguare optical measure-
ment and injection errors cn the deviation in end position and cumulative
fuel consumption for velocity corrections during the mission are given.
In addition, some results are presented which give a quantitative idea
of the ineccuracies in linear prediction resulting from neglecting
nonlinearities.



TINTRCDUCTION

Reference 1 described how some advanced concepts of statistical
linear filter theory proposed by R. E. Kalman (ref. 2) could be used
to obtain the filter which would give the best estimate of the trajec-
tory (position and velocity vectors) of a space vehicle. Data were
given also on the performance of this optimal filter for accuracies
judged achievable by on-board optical instruments.

The safety of a manned circumlunar mission is increased if an
on-board midcourse navigation system does not have to rely on tracking
information obtained on earth; it is apparent that the use of an optimal
filter in such a system should be explored. It is the purpose of this
report, therefore, to present details of a possible on-board navigation
system that uses the optimal filter and to evaluate the performance of
the system. The guidance system chosen is based on the assumption that
the actual trajectory of the space vehicle can be accurately described
in terms of linear perturbations about a precalculated standard or ref-

erence trajectory. This technique has been used successfully in many prob-

lems involving the dynamics of aircraft and, because of its simplicity,
could prove useful in space navigation problems.

NOTATION

A prediction matrix (relating deviations from the reference
trajectory at the end point to those at earlier times)

c transformation matrix for converting errors in angles and
magnitude of velocity correction into Cartesian coordinates

E expected value

F matrix of coefficients for linear differential perturbation
equations

I unit matrix

X welghting matrix

P covariance matrix of estimation errors
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magnitude of error in predicting position deviations at
the end points

covariance matrix of deviations between actual and reference
trajectories

range of vehicle from earth
range of moon from earth
range of sun from earth

magnitude cof position deviation betwsen actual and reference
trajectories

magnitude of position deviation between actual and esti-
mated trajectories

time
magnitude of velocity correction

magnitude of velocity deviation betws=en actual and reference
trajectories

magnitude of velocity deviation between actual and esti-
mated trajectories

Cartesian coordinates of vehicle's position
Cartesian coordinates of moon's position
Cartesian coordinates of sun's position

state vector (6 X 1 matrix of vehicle's position and
velocity deviations from reference )

estimated value of x

error in estimating x

component of x

value of x immediately after a velocity correction
3 X 1 matrix of position components of x

3 X 1 matrix of velocity components of x



elevation angle of earth or moon

azimuth angle of earth or moon

one-half the subtended angle of earth or moon
small deviation

standard deviation of angular measurement errors
elevation angle of corrective veloclty vector

azimuth angle of corrective velocity vector

transition matrix

Superscripts

transpose of a matrix
derivative with respect to time

3 x 1 matrix

Subscripts

end point

velocity to be gained

error in velocity correction
earth

integers

moon

root-mean-square value

sun
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THE NAVIGATION SYSTEM

General Description

The ground rules postulated for this study were as follows:

1. Manned reconnaissance of the moon is the principal objective
(in the present case by means of a single passage around the moon).
Thus, accuracy in achieving a prescribed perilune and, more importantly,
& prescribed perigee for a safe return to earth is required with a mini-
mum expenditure of fuel for application of corrective velocities.

2. To provide increased safety for the crew of the vehicle, the
midcourse guidance system shall use on-board instrumentation and compu-
tations to provide navigation information, but shall also have the
capability of accepting guidance information from other sources (for
example, ground tracking data).

The design of a midcourse navigation system fulfilling these ground
rules is a control problem like many others, the aspects of which may
be described as follows. Sketch (a) illustrates the first half of the
midcourse lunar flight. Suppose that errors at injection cause the
vehicle to depart from the reference trajectory so that desired end-point
conditions (e.g., at perilune, E) will not be achieved. Suppose further
that at point C a wvelocity increment, AV, is to be added to correct for
these errors. First, it is necessary to determine by means of data

PERILUNE
"a/E

Py
J e, MOON
REFERENCE TRAJECTOQY //’

INJECTION

Sketch (a)



obtained from imperfect sensors (optical instruments are assumed here)
as good an estimate as possible of the position and velocity (i.e., the
state) of the vehicle at point C. This might be called trajectory
determination. Then, on the basis of the best estimate of the trajec-
tory, end point conditions must be predicted (e.g., what will be the
estimated perilune, point E, if no corrective action is taken). Next,
a guldance law must be used which makes possible calculation of desired
corrective action to change the estimated end point conditicns to cor-
respond to those desired. Finally, the indicated control action must
be implemented by applying thrust.

In proper perspective, this can be seen to represent in a general
way & closed-loop control system as shown in block diagram form in
sketch (b). The navigation and control aspects listed above comprise
the forward loop of the system, and the applied control action (thrust)
is fed back through the kinematics to influence the state which is the
input to the forward loop of the system, In the present study we will
assume that the control action will be intermittent and impulsive in
nature (i.e., instantaneous velocity corrections). This assumption
makes 1t possible to design the forward part of the loop independently
of closed-loop considerations, nevertheless keeping in mind that the lat-
ter must eventually be considered. In reference 1 the design of the
forward loop through the optimal filter was discussed. The remainder
of the system and its closed-loop operation will be treated in this
paper,

KINEMATICS i CONTROL SYSTEM
l TRAJECTORY ESTIMATION
|
INSTRUMENT : OP TIMAL
| SENSORS » FILTER FOR
ERRORS ?F : TRAJEC TORY
| OBSERVATIONs | PETERMINATION
OBSERVABLES _
(SPACE ANGLES) } ESTIMATED
| — STATE
GEOMETRY | :
: | PREDICTION
STATE— : 1
|
UIDANCE
INJECTION | TRAJECTORY : 6
CONDITIONS | DYNAMICS | '
3 VELOCITY
| CORRECTIONS CONTROL
P / |
|

Sketch (b)
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Theoretical Considerations

The optimal filter.- The theory of the optimal filter is given in
detail in references 1 and 2 and will be discussed here only to the
limited extent necessary to understand the results. The optimal tra-
jectory determination scheme can be represented in the form illustrated
in sketch (c). Observation inputs are assumed to consist of sets of
angles measured at times tx by sensors subject to random instrumenta-
tion errors. These errors are assumed to be statistically uncorrelated
from one observation to the next,

WEIGHTING
MATRIX
SPACE EQUATIONS _ ESTIMATED
ANGLE ——» K OF MOTION *
OBSERVATIONS® - . STATE
|
|
|
! GEOMETRY
- | EQUATIONS
ESTIMATED | et
ANGLES !
I —
COMPUTE COMPUTE |
. -
K P |
STATISTICS
OF
ESTIMATION
ERRORS
Sketch (c)

The operation of the system is described as follows: After injec-
tion but before any observations have been made, the best estimate is
bvased solely upon the best knowledge of injection conditions. Thus, the
estimate of injection conditions is inserted as an initial condition on
the equations of motion, which are integrated to keep the estimate of
the state up to date. The gain K 1is zero except at times observations
are made. When an observation is made at time %), the set of observed
angles is compared with the estimated angles computed from the current
estimate of the state variables. The difference is weighted by the
matrix K(tk) to produce an incremental change in the estimated state
at time ty. The new estimated state variables then serve as new con-
ditions on the equations of motion which are then integrated from time
ty until the time of the next observation, ty4,, to maintain a con-
tinuous estimate of the state. As each observation is made, the process
is repeated.



The weighting matrix K(tk) is seen to be the heart of the esti-
mation procedure, and the objective is to develop the necessary equations
from the theory whereby K(t;) can be computed. These equations are
given in references 1 and 2, For solution they require a knowledge of
the equations of motion, the relations between the observables and the
state variables, and the statistics of injection errors and instrumenta-
tion errors. Involved as an intermediate step in the calculation of
K(ty) is the computation of the covariance matrix of estimation errors,
P(t , which is a description of the statistics of the errors in the
estimate and is therefore quite useful as a measure of the performance
of the system., If the nature and the timing of observations are known
a priori, then K(tk) and P(t) can be computed before the flight and
stored for use when needed. However, to allow for greater versatility
these computations are envisioned as being performed in the spacecraft
computer at the specific times they are needed.

The trajectory determination system, of course, operates as an
integral part of the complete vehicle guidance and control system and
must take into account the intermittent application of impulsive velocity
corrections. When such corrective action is taken, the measured value
of this action is introduced directly into the system as an instantane-
ous change in the estimate of the state, and the covariance matrix of
the error in the measured value of the corrective action adds directly
to P. Thereafter the system continues with its observation routine
Just as before with no loss of information due to the control action,

The guidance equation. - Linear prediction is used to calculate the
velocity correction that must be applied for the vehicle to arrive at
the desired end point., This method of prediction is based on the as-
sumption that the actual trajectory can be accurately described in
terms of linear perturbations around the reference trajectory. Given
a set of perturbations in position and velocity at some time, t,, the
perturbations at a later time, t, will be a linear combination of the
earlier ones, It is convenient to write this relationship in matrix
form as follows:

x(t) = 0(t5t5)%(t,)

where the x's are 6 X 1 column matrices of perturbations in position and
velocity and ¢ 1is a 6 x 6 matrix, defined as the transition matrix
between times t, and t. The transition matrix between some earlier
time, t, and the time of the reference end point is defined in this
report as a prediction matrix and is designated by A. In equation form

Xp = Ax(t) (1)

O W\
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where X is a 6 X 1 matrix of position and velocity deviations at the
end poin%. Provision has been made in the computer program to calculate
poth A and the transition matrices discussed in reference 1, The
methods of computation are described in appendix B. Equation (1) may
be written in partitioned form as

o
=

i
i
> 1

= (2)

i
=
™
=
>
e

where the X and ¥ are 3 X 1 matrices of position and velocity deviations,
respectively, and the A; are 3 X 3 matrices. It is desired to have the
actual and reference trajectories coincide in position and velocity at

the end point. In general, only three components of the vector xp can
be reduced to zero with a single velocity correction. For this reason

the guidance equation is formulated so that only position errors will

be made zero at the end point.

Equation (2) can be expanded to compute the end-point position
error

Tp = AX + A (3)

If at time t a velocity correction, Xg, 1s added, the change in posi-
tion at the end point will be

Xp = Axg (%)

For the position error at the end point to be reduced to zero

or

Alx+A2§+A2x:‘G= 0 (6)
which gives

% = -<A21 Al)x - X (1)

or

where I 1is a 3 X 3 unit matrix.
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For any given reference trajectory the submatrices, A;, are pre-
scribed functions of time and relate deviations from the reference
trajectory at present time to those of a predetermined time of arrival
at the end point. Therefore equation (7) implies guidance of the
vehicle to a fixed position at a fixed time; in other words, the guid-
ance equation represents a "fixed time of arrival system." This method
of navigation may not be the best but the resulting guidance equation
is simple and is adequate to demonstrate that the optimal filter com-
bined with linear prediction can provide a satisfactory midcourse
navigation system.

THE DIGITAL COMPUTER SIMULATION

Description of the System

The navigation system as simulated on a digital computer is illus-
trated in sketch (d), The portion to the left of the dotted line is not

VEL. CORR.

!
MEASUREMENT
> ON BOARD GUIDANCE SYSTEM ERRORS

Qe

|
|
|
: & [ CALCULATION | A
| OF TRANSITION
OPTICAL | MATRICES
INSTRUMENT [— | f
ERRORS; |
i REFERENCE
I TRAJECTORY
CALCULATION] || ;
OF [ OPTIMAL é— CALCULATION
\ F_VEL. CORR.
MEASURED i ESTMATED  LOF_VEL. CORR
| TRAJECTORY
1
TRASEOTORY| 1| | MAKING  =yec)anism LOGIC
| {_VEL. CORR.
il | VECLOCITY CORR. _ |
] .
Sketch (d)

part of the system aboard the vehiwle, The blocks labeled "Actusl
Trajectory" and "Reference Trajectory" are solutions of the four-body
nonlinear equations of motion in a geocentric nonrotating Cartesian
coordinate system. Provision is made for perturbing the injection con-
ditions of the actual trajectory im a random fashion from those of the
reference., The equations of motion together with brief descriptions of
the coordinate system and the trajectory computation are given in
appendix A,

Ve RV RN, I,
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The optimal filter has been described previously. It will be re-
garded here simply as a device that gives the optimal estimate of position
and velocity and the covariance matrix of the errors in those estimates.

The calculation of transition matrices, ¢ and A, is a mechanization
of the computations in appendix B referred to earlier., The calculation
of velocity correction is a mechanization of the guidance equation, and
the decision logic determines whether the indicated correction is actu-
ally to be made. Such a decision process in a practical system might be
quite complex, but the logic used here simply calls for corrections at
a few predetermined times,

When a velocity correction is applied, it is assumed that the vehicle
is oriented by means of an attitude control system to the desired azimuth
and elevation angles. A velocity control system is then energized to
provide thrust until the desired velocity increment is achieved. These
two systems are referred to as the velocity correction mechanism in
sketeh (d). In the simulation, random errors in correction magnitude
and direction are generated and added to the desired velocity correction,
to form the actual correction applied.

The block labeled "Vel, Corr. Measurement Errors' represents the
error introduced by on-board measurement of the velocity correction
(e.g., by integrating accelerometers on a stable platform). In the simu-
lation the assumed errors in this measurement system must be added to
the actual velocity correction to form the corrective velocity input to
the optimal filter.

Assumpticns of System Characteristics

The evaluation of the navigation system was made by considering
only variations in those errors which could be readily accounted for
statistically. The assumptions concerning the nature and magnitude of
these statistical errors, are discussed in the following paragraphs.

Optical instrumentation.- First it was assumed that the vehicle
will contain some sort of an inertial fixed reference system (e.g., a
stable platform). For convenience of computing, these reference axes
are taken as coinciding with those of the geocentric Cartesian system
used for trajectory calculations, The calculated angles are the sub-
tended half angle, y, of the earth or moon and the elevation and azimuth
angles, @ and B, of the center line of the same body with respect to the
reference axis system. The equations used for calculating these angles
are given in appendix C. It was assumed that the optical instruments
would measure the subtended angle and locate the center line of the
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planetary body either by manual observation of the disc or crescent or
by automatic disc scanning. Such devices are subject to errors due to
uncertainties in the observed surface such as atmospheric altitude
fluctuations and nonspherical shape, and these errors become larger with
decreasing range. The errors were assumed to be random with Gaussian
distribution and zero mean. In addition, it was assumed that the errors
in the various angles comprising one observation were independent of
each other, had the same standard deviation, and were uncorrelated with
the errors at other observation times. Since the angular errors become
larger with decreasing range (i.e., with increasing magnitude of the
subtended angle), the standard deviation of the errcrs in the observed
angles, in seconds of arc, was assumed to be of the form

o= VK2 + (k7P

where X, 1s the standard deviation of error in the basic optical sys-
tem and K, reflects the range-dependent component.

Sequence of observations.- The sequence and spacing of observations
were chosen with a view to what might be practical on such a flight.
The on-board system was assumed to be capable of measuring a total of
six angles (azimuth, elevation, and subtended angle of both earth and
moon). The maximum amount of information theoretically available in one
observation could be obtained by measuring these six angles simultane-
ously., However, the capability of sighting both bodies simultaneously
would increase the complexity of the measuring instruments and probably
complicate the vehicle design. For this reason it was decided that only
one body at a time would be observed.

It appeared, from computer results not presented here, that in the
immediate vicinity of the earth or moon it was best to observe only that
body. ©On the other hand, more information could be obtalned during most
of the trajectory if the two bodies were observed alternately., It also
seemed reasonable that more time must elapse between observations of two
different bodies than between two sightings on the same one. For these
reasons the following basic sequence of measurements was used, In the
immediate vicinity of the moon or earth, as indicated in figure 1, only
the nearer body was observed. For the remainder of the flight, first
the earth was observed for 1/2 hour at 6-minute intervals (6 sets of
observations), and then, after a 1/2-hour delay, the moon was observed
for 1/2 hour. This procedure took place throughout most of the flight
except for observationless periods near the points of entry into and
exit from the moon's sphere of influence,l

1The observationless periods were necessary to allow for translation
of the origin of coordinates (see appendix A).

O \V\n >
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This sequence resulted in a total of 841 sets of observations
for the complete trajectory.

Velocity corrections,- Six velocity correcticns were made at times,
measured from injection, of 0.5, 2, 3, 3.5, 5, and 6.45 days. These
times are indicated on the reference trajectory in figure 1. The final
correction was made at such a time as to allow approximately 1 hour of
subsequent observation before re-entry. The information thus obtained
would be useful for the terminal guidance system. Otherwise the number
and spacing of corrections were chosen more or less arbitrarily. The
velocity increments were applied in the middle of the half-hour delay
periods between observations. This delay would allow time for orienta-
tion of the thrust axis and then reorientation of the vehicle for
observation purposes.

Injection errors.- Injection errors in each of the Cartesian com-
ponents of position and velocity were selected from a set of random
numbers representing a Gaussian distribution.

The standard case.- The standard case was chosen as follows:
Observation and velocity correction schedules were those described
above, The values of X, and K, in the standard deviation of errors
in the observed angles were chosen as 10 seconds of arc and 0. 001,
respectively, to give

o = J100 + (0.001y )2 seconds of arc

The rms values of errors in making velocity corrections were 0.5° for
each angle and 0,1 m/sec in magnitude of velocity. The rms error in
measuring applied velocity corrections was taken as 1 cm/sec in each
component. The rms values of injection errors were 1 km in each
camponent of position and 1 m/sec in each component of velocity.

Calculation of Statistical Information

To conserve computer time several pertinent variables have been
calculated in a statistical sense, For example, the covariance matrix,
P, of errors in estimation discussed in reference 1 gives, in a single
computer run, the mean square errors in estimation for a class or
"ensemble " of trajectories; that is, it approximates the results that
would be obtained from averages of all possible data runs with the
following things in conmmon:

1. Injection conditions with a given (Gaussian) statistical
distribution around those of the reference trajectory;
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2. The same set of angles observed at the same times;

3. The same method of calculation and times of application of
velocity corrections; and

L, The same statistical distribution of errors in performing the
above operations.

In addition to the covariance matrix of errors in estimation one
would also wish to know R, the covariance matrix of differences between
the actual and reference tragectories, Prms: the rms error in prediction
of position at the end point, urpms, the rms velocity correction at each
point where a velocity correction is made, and the rms deviation in
radius of periapsis at the end point. The methods used for calculating
these quantities are outlined in appendix D,

O WU\l

RESULTS

A1l the results presented here use the reference trajectory shown
in figure 1. This trajectory is entirely ballistic and lies approxi-
mately in the moon's orbital plane, Injection occurs at perigee with
an altitude of 200 km at about 99,2 percent of escape velocity. The
vehicle passes ahead of the moon and reaches perilune at a lunar alti-
tude of L4766 ¥km. The mocn's gravitational attraction rotates the di-
rection of flight so that the outgoing and return portions of the tra-
Jectory form the well-known figure-eight pattern. The vehicle's target
on return is a vacuum perigee at an altitude located so the vehicle is
traveling in approximately the same direction as the earth's rotation.
The total flight time from injection to return perigee is 6.53 days.
(This is the same reference trajectory as used in reference 1.)

The trajectory considered is generally suitable for the circumlunar
mission because it has a relatively low energy, yet has a perilune not
teoo large for effective lunar observations, Launch will almost certainly
take place from Cape Canaveral and the reference trajectory used herein
is not necessarily attainable from that launch site. Furthermore, there
is no constraint imposed on the location of return perigee to provide
for landing at a desired site. However, it is anticipated that the use
of a different reference trajectory will not substantially alter the
efficiency or general operating characteristics of the navigation system.



2L

15
Errors Tue to Linear Predicticn

Before examining the cperation of the navigation system it was
considered desirable to cbtain an estimate of the errors due to the
linear prediction scheme used in the navigation system. Since the
linear prediction matrices involved are obtained fram perturbation
equations of motion which ere only approximately linear, errors at the
end point must occur which are purely the result of this approximation.
These errors can be evaluated by comparison with the solution of the
complete nonlinear equations of motion for a system in which the de-
termination of state (the position and velocity) and application of
corrective velocity can be performed exactly. Because the linear per-
turbation equations are time variant,the evaluation must be made at
several points along the trajectory. It is obvicusly impossible to con-
sider every likely situation in such an evaluation, but a special case,
which is of interest since it facilitates a guantitative evaluation of
such errors, is outlined below.

Examination of the guidance equation (7), ¥Xg = -(AZY A )X - X,
shows that nonlinearity as a result of position deviation from the
reference is the important consideration since velocity deviations are
canceled by the application of a perfect velocity increment., The primary
question to be answered is therefore how do the errors at the end point
increase with increasing position deviation if eguation (7) is used for
computing velocity corrections?

In general,

Xjp = Ti(X + x, t) (8)

where X refers to components along the reference trajectory and x
refers to deviations from the reference.

Expanding equation (8) in a Taylor series gives

2

s df s .
1,1
= N -+ —— -_—
X = f1(%t) Zaxjx 22 3Ky o kT eee (9)
J=1

p,-'c_J
i
[ D—"

It can be seen that linear prediction theory accounts for the
second term of equation (9). The errors in linear prediction are the
higher order terms of the expansion. It can be reasonably well assumed
that errors should be proportional to the first term neglected for small
deviations from the reference trajectory. The error in linear prediction,
6X1E is therefore
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1~ 9% 1

~ = i x. = =xTaq.

8XiE 5 ST X%k T 5 X Gyx (10)
=1 J k

k=1

where Gy 1is the 6 x 6 matrix of second partial derivatives. In parti-
tioned form,

G X
.| 1 1
«T gyx = (T #T)| 20 1. (11)
Gig Gi, X
= %L Gy, ® + X Gy X + X Gy X + X0y X (12)

If at time 1, a velocity correction is made by use of equation
(7), then immediately after the velocity correction
2 -1
x(ty) = - Ax AX(t) (13)
Substitution of equation (13) in equation (12) with x(t,) defined as
Xo yields
= - - T -1 T — m -1, _
XoT GiXe = Ko© Gi,Xo - Xo (Ae Al) Gi Xo - Xo© Gihe MAXo
2

_ T/ 1. -
+ %g <A AL Gi4A21 Ao (14)

If the magnitudes of the three components of x(t,) = X, are chosen
x ()] = 'xe(tl)l = !xa(tl)| = rO//§> , then from
equations (10) and (1k4)

equal (i. e.,

8x, =~ K.r 2
iE Ki o)

and

rg = 25"1 2 = Kroo where K =(Kl + K, + Ks)l/g (15)
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Thus we can conclude that to a first approximation the range error at
the end point with linear prediction is proportional to the square

of the deviation from the reference trajectory at the time of the
velocity correction.

The validity of this line of reasoning was checked at four points
on each phase (outbound and return) of the reference trajectory. Equal
position deviations from the reference trajectory were made along each
of the Cartesian coordinates by use of positive and negative values of
10, 10C, and 1,000 kilometers in each component. Then for each of the
six resulting cases the velocity was corrected according to equation
(T) and the trajectories were computed to the end point by means of the
complete nonlinear equations of motion. When the ratio of the magnitude
of deviation at the end point to the square of the initial deviation
was computed, it was found to be constant within & few percent for the
two largest deviations. Disagreements in some cases with the smallest
initial deviation could be attributed to loss of significant figures in
making the velocity correction and computing the final errors. Initial
displacements of 10,000 km were also used at a range of 150,000 km from
the earth on both phases of the trajectory. The ratios of these cases
corresponded quite closely 1o those for 100 and 1,000 km initial
displacements.

A summary of the results of this study are shown in figure 2. The
ratic of the magnitude of the end point error (inherent in the linear
prediction scheme ) to the square of the deviation at a particular range
is plotted as a function of range from the center of the earth. The
significance of these curves may be more easily understood by an example.
In figure 3, to be discussed subsequently, rms position deviations are
shown for an ensemble of trajectories. At 0.62 and 2.97 days on the
outbound flight (corresponding to 150,000 and 350,000 kilometers range
from the earth) the position deviations are 199 and 25 kilometers, re-
spectively. When these numbers are multiplied by 3 to increase the
probebility that a single member of the ensemble will lie within these
deviations and when the data of figure 2 are applied directly to these
numbers (597 and 75 km), it is found that the errcr at perilune due to
linear prediction is 2.07 and 0.026 kilometers, respectively.

If the data shown in figure 2 and the example cited are repre-
sentative of likely cases, the following conclusions can be drawn.
First, the inherent errors in the linear prediction scheme due to
neglecting higher order terms are smell for reasonable magnitudes of
the deviation from the reference trajectory. Second, errors due to non-
linearity are greatest near the centers of attraction and reach a mini-
mum at & range from the earth of about two-thirds of the earth-moon
range.
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Operation of the Navigation System

The purpose of this portion of the study was to determine whether
the performance of the navigation system was satisfactory for reasonable
magnitudes of those system errors which could be readily accounted for
statistically; that is, random errors in observations, welocity cor-
rectlions, and injection conditions were considered, but systematic
errors, such as biases and imperfect knowledge of various astronomicsl
constants, were left for subsequent studies. It was also desired to
determine the effects of variations in the magnitudes of the various
random errors and in the number and spacing of observations.

Data for the evaluation of the navigation system were obtained with
the aid of the digital computer for the following cases:

1. The standard case referred to earlier.

2, Same as case 1 except the errors in making and measuring
velocity corrections were zero.

3. Same as case 1 except the rms value of observation errors
was increased by a factor of 5, that is,

o =~ 2500 + (0,005y ¥

L, Seme as case 1 except the rms value of injection errors
was increased by a factor of 5 to 5 km and 5 m/sec.

5. Same as case 1 except the sequence of observations was so
changed that one set of observations of the earth or the
moon was made alternately at 2-hour intervals for a total of
T7 observations,

Comparison of statistical data with one ensemble member, - Figure 3
shows, for the standard case, the rms position and velocity deviations
between the actual and reference trajectories for an ensemble of runs.
Also shown are the corresponding quantities for a specific run, that is,
one member of the ensemble. Similar data were computed for all five of
the cases mentioned and in all instances the correspondence of the
individual and the ensemble data were well within what would be expected
from theoretical considerations. Note that the velocity deviations
increase rapidly near the centers of gravitational attraction (perilune
time = 3.28 days, perigee time = 6.53 days). These increases are to be
expected since the total velocity also increases rapidly. The increase
in the rms position deviation prior to perigee time is a result of the
increase in the velocity deviation. Since the gravitational center has

O U\
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a focusing effect on approach trajectories, it is reascnable to expect
that this increase in position deviation occurs mainly along the path of
the vehicle., This reasoningz is borne out by comparison, to be given later,
of position deviations at the time of reference perigee with those in
perigee altitude,

Time histories of various statistical quantities of interest for
all the five cases are prescnted in figures 4 through 8. The time
histories involving trajectory estimation are given only to the time of
the final observation. Figure 4 shows the rms errors in estimating the
actual position and velocity of the vehicle at the time of that esti-
mation. The curves are an average of the estimate Just after each
observation and do not depict what happens between observations.

Estimation errors.- A comparison of cases 1 and 2 shows the effects
of errors in measuring velocity corrections. The effect is noticeable
only during the return phase and is not significant there. As a result
of the fact that the difference between the two cases i1s caused by
errors in measurement of velocity corrections only, it is understandable
that the effect is noticeable only when the error in estimating velcecity
is quite small., As can be seen from figure 4(a) ( note the scale change
from figure M(C)), the error in estimating velocity achieves its mini-
mum during the return phase. A comparison of cases 1 and 3 shows that
increasing the errors in observation by a factor of 5 increases the
error in estimate by a similar factor during most of the trajectory.
This result should be expected in view of the fact that, except for a
minor influence of injection errors and velocity correction measurement
errors, the accuracy of the estimate of the trajectory is fundamentally
dependent upon the errors of the observations., The fact that injection
errors are relatively insignificant as far as errors in estimation are
concerned can be seen by comparing cases 1 and 4. The only noticeable
effect occurs during the first half day of the flight since after this
time a sufficient number of observations has been made so that the
knowledge of injection errors has little influence on the estimate of
the trajectory.

From a comparison of cases 1, 3, and 5 it can be seen that the
effect of reducing the number of observations is to a large degree
equivalent to increasing the observation errors. Thus by reducing the
errors in observation, one may make a lower number of observations and
still retain as good an estimate.

Figures 4(c) and (d) show that the error in velocity estimate in-
creases rapidly near the centers of gravitatiocnal attraction. The
primary reason for this increase is that the velocity increases rapidly
near the centers of attraction.

Prediction errors. - Figure 5 shows the rms error in prediction of
the total end-point position deviations. This guantity represents the
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errors in estimation extended to the end point by linear prediction.
The prediction equation is derived in appendix D. The calculation of
this quantity was made under the assumption of perfect linearity; that
is, prediction errors due to nonlinearities were not considered. In
the absence of observations the prediction error remains constant. The
very sharp decrease in prediction error during the early part of the
flight is therefore a consequence of the observations.

On the outbound phase the rate of change of prediction error de-
creases with time and is quite small after about 1.5 days. As a con-
sequence of the fact that 1t remains constant during observationless
periods, it is likely that the rate of making observations could be
considerably decreased from this point to the moon without seriously
affecting perilune miss. Similarly on the return flight the observation
rate should be able to be considerably reduced during the period of
4,25 to 6.25 days without serious effect on the errors at entry.

The various parametric changes have an effect on prediction errors
similar to that discussed previously for estimation errors.

Indicated velocity correction.- Figure 6 shows the rms indicated
velocity required to null the end point position error as a function of
time. Since the reference trajectory and estimated trajectory (as
determined by the optimal filter) are set equal to each other at in-
jection, all the cases start with zero indicated correction. If no
observations are taken, this quantity is zero throughout the flight.
Since observations cause the estimated trajectory to converge on the
actual trajectory, which in general differs from the estimate, the rms
indicated veleocity required increases with each observation (starting
at injection). Prior to the first velocity correction, cases 1 and 2
obviously are identical since the observation sequences and injection
errors are identical. For both cases 3 and 5, the indicated rms value
of the first velocity correction is smaller than that in case 1, although
this is not noticeable at the scale used in figure 6. This is a result
of the fact that the estimated trajectory has not departed as far from
the reference trajectory because less information is available from the
observations. Thus, it might be said that the system automatically
applies a confidence criterion, weighting the velocity corrections in
accordance with the uncertalnty in the estimate.

The discontinuities in the curves occur at the time of velocity
corrections. Since the velocity corrections and the knowledge of
position and velocity are imperfect, the rms correction required in-
creases following a correction and new observations. For purposes of
clarity only case 2 is shown in figure 6(b) after the final velocity
correction. The behavior of the other curves is essentially the same
and all become infinite at the time of reference perigee.

O U\
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Deviations from the reference trajectory.- Figure T is a plot of
the rms position deviation between actual and reference trajectories,
The discontinuities in slope occur at the points where velocity cor-
rections are made, as can be seen by comparison with figure 6. The
divergence between cases 1 and 2 becomes relatively more important as
return perigee is approached., This result would be expected because of
the divergence in prediction errors and because the required velocity
corrections become small compared to the errors in making them. In this
connection it can be seen that the two cases with poor knowledge of the
actual trajectory (3 and 5) show little or no improvement as the result
of the final velocity correction, On the other hand, the standard case
and the one with large injection errors (case 4) show a marked change
and almost coincide at the final observation. A comparison of the curves
of this figure with those of figure L shows that the improvement is
greatest when the deviations from the reference are largest compared to
the errors in knowledge of those deviations., In other words, the indi-
cated velocity correcticn is proportional to the fraction of the end
point error that can be predicted accurately.

The corresponding time histories for deviations in velocity are
presented in figure 8, The step discontinuities occur at the times of
the velocity corrections and their magnitudes indicate the magnitudes of
the corrections made. Both in this figure and for the position devia-
tions in figure 7, the case with no errors in making and measuring
velocity corrections (case 2) does not differ significantly from the
standard case until the return phase, This deviation is somewhat more
pronounced than in the case of the estimation errors (fig. 4(d)) be-
cause the errors in making the correction, which are larger than those
in measuring it, are involved here, Even the errors in applying the
velocity correction, however, do not become significant until the errors
of estimation become small., This fact would indicate that in the
presence of an error in msking the velocity correction which is inde-
pendent of the magnitude of the correction,it would be better to time
the later velocity corrections so that the magnitude of each one is
larger.

Terminal conditions. - The most critical requirement of the mid-
course guldance system is that it return the vehicle on a trajectory
from which a safe re-entry can be made followed by landing at a pre-
determined site. Some quantities which show how well this end is ac-
complished are shown in sketch (e). The distance, r, is the magnitude
of the vehicle's position deviation from the reference trajectory. The
distance, r, is the magnitude of error in estimating the vehicle's
position, while v and v are the corresponding deviations in velocity.
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POSITION AT TIME OF
REFERENCE PERIGEE

VREF VesT
VELOCITY DIFF

Sketch (e)

These quantities are essentially the same at the time of reference
perigee as they would be at re-entry into the earth's atmosphere. The
quantities 1r and v at the time of reference perigee indicate the accu-
racy of information supplied to the terminal guidance system. The
perigee of the actual trajectory can be expected to occur at a different
time than that of the reference, and although the deviation in radius

of perigee determines the possibility of making a safe re-entry, it does
not necessarily satisfy the requirement for point landing.

The rms values of these quantities and others of interest were
calculated for the different error assumptions by linear statistical
methods and are presented in table I. In the first row are listed
results for the standard case referred to previously. Note that the
rms variation in perigee height is only 0.6 km, indicating a highly
successful survival potential for the spacecraft and its occupants.
The next two numbers, 11.5 km and 11,0 m/sec for the total rms range
and velocity, respectively, are given at vacuum perigee but are of the
same order of magnitude at atmosphere entry. Since the spacecraft is
re-entering at near parabolic velocity, the entry flight-path angle
variation is less than 0.001 radian and the error in range can easily
be eliminated during terminal guidance. A second set of data, those of
error in knowledge of position and velocity, are given at the time of
reference perigee as 7.7 km and 6.7 m/sec respectively. These latter
quantities influence the terminal guidance system, but the resultant
miss on landing was not calculated.

\O T\
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A conservative estimste of the total roo%-mean-square corrective
velocity required for the ensemble of trajectories during the 6—1/2—day
flight is obtained by adding the root-mean-square values for the
individual correction times, The total corrective velocity for the
standard case has a value of 15.3 meters per second. It is desirable to
have some estimate of the percentage of the vehicle's weight which must
be allocated to Tuel for 1he midcourse guidance corrections. For this
purpose the weight percentages were calculated using a specific impulse
of 300 seconds and the toial rms velocity correction required. These
results are listed in the last column of table I. Several times this
amount of fuel will be needed for confidence in the safety of the missicn,
but the requirement is still gquite modest.

The effects of various parametric changes from the standard are
shown in the next four rows. For example, if one could mske and measure
velocity corrections perfectly, then the perigee errors are reduced but
the reduction in total corrective velocity is comparatively small.

Increasing the errors in observations by a factor of 5 increases
all the terminal errors by a factor of 2 to 4 but velocity increases
only by about 50 percent. As might be expected, since the trajectory
determination system is quite accurate, increasing injection errors by
a factor of 5 increases the total velocity correction required by some-
what less than 5 but has little effect on terminal errors. A comparison
of the data in the third nnd fifth rows shows that a good measurement
system allows the liberty of teking fewer observations to achieve the
same accuracy at perigee. Even though the total. number of observations
was decreased from 844 to 77, the terminal errors were only approximately
doubled and the increase in corrective velocity was small,

The equivalent data for perilune are presentes
metric changes other than increased injectior
on tre total corrective wvelocity for this
differences between r and the deviation in .
as pronounced as in the case of return perigee, buv uvae, . .
large.

The rms position errors, r, are very nearly equal to the prediction
errors at the time of the final velccity correction. Delay of the final
correction would cause v to approach T as a lower limit, but the
rapid increase in corrective velocity required would make any significant
reduction in r dimpracticel., On the other hand, the amount of fuel
necessary could quite prooably be reduced if a larger position deviation
at periapsis could be tolerated.

The rms deviation in radius of periapsis Rpep - Rget, Particularly
at the earth, is much smaller than the corresponding rms pesition devia-
tion from the reference trajectory at the time of reference periapsis.
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This fact indicates an added safety factor for emergency ccnditions
since the probability of a safe return to an undetermined landing site
is considerably higher than that of landing at a particular site.
Further studies are needed to determine the effects of deviations from
the reference trajectory at the time of perigee on the accuracy of at-
taining the landing site. However, these data indicate that the final
velocity correction should be based on the characteristics of the
terminal portion of the trajectory.

Increasing the rms value of injection errors had negligible effect
on the end point position errors. The data show, on the other hand,
that the total rms velocity correction required is almost a constant
multiple of rms injection errors.

The data in the tables show the system to be efficient and accurate.
However, it must be borne in mind that systematic errors were not con-
sidered in obtaining these results., Likewise no attempt was made to
make the number and spacing of either observations or velocity cor-
rections optimum.

Computer requirements,- An additional item of information which
may be of interest is the computer requirements. The simulation uses
13,233 words of storage and requires about 3 hours (including set-up
time) on the IRM 704, A Fortran program was written which deleted all
parts of the simulation, such as Integration of the actual trajectory,
not necessary to the on-board navigation system. This revision reduced
storage requirements by about a factor of 2, Additional simplificetions
can probably be made to further reduce the storage requirements., Data
on the time requirements of the simplified program are not available,

7o &b q be a substantial reduction,

“"CLUDING REMARKS
"

T e ’néﬁﬁfaaﬁﬁgggﬂggvigation system using the optimsl filter and linear
prediction performs satisfactorily in the presence of the errors assumed,
With proper scheduling the number of observations can be kept within
reason and the accuracy required of these observations should be within
the state of the art by the time the mission is attempted. In addition
the amount of fuel necessary for midcourse guidance is not excessive
and extreme accuracy in applying the velocity corrections is not required.

It is true that systematlc errors such as bias and Imperfect knowl-
edge of astronomical constants have not been considered in this study,
and also no attempt has been made to determine the optimum number, type,
and spacing of observations or the times of making veloclty corrections.
Work 1s now under way to evaluate the effects of systematic errors. The
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distribution of injection errors assumed (equal in each Cartesian
coordinate) is incorrect; however, it is not anticipated that use of
the correct distribution when available will have an appreciable effect
on the results except for the fuel requirement, which will be larger for
larger injection errors.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Dec. 4, 1961
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APPENDIX A

NONLINEAR EQUATIONS OF MOTION FOR TRAJECTORY CALCULATIONS

The equations of motion are derived under the following assumptions:

1. A restricted four-body system is sufficiently accurate.

2, The second harmonic term of the earth's oblateness is sufficient.

3. The sun and moon are spherical and homogeneous.

The coordinate system is Cartesian and geocentric. The Z axis
lies along the earth's polar axis, positive to the north. The X and Y
axes lie in the equatorial plane with the positive X axis in the
direction of the vernal equinox. The Y axis is oriented so as to
form the right handed orthogonal system shown in sketch ().

z

O w
QO VEHICLE (Xg, Yg, Zg)
(x,Y,2)
(O moon
(XmsYmyZm )
Y
EARTH
(0,0,0)

X (VERNAL EQUINOX)

Sketch (f)
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The equations of motion are derived by methods given in reference 3.
They are as follows:

o —HeX a2 72
RS [“J@;)(”fﬂ

e
- E(ney) - 5 - HngS) ' u;? ()
2
e I o
gyt N ST (#2)
N N R
7z =_:§[1+Jﬁj< - 5?;)]
(% %) by Hg(Z-Z5)  ugZg
S T S (23)
where
R, = V¥ + Y8 + 77
Ry = V& *+Y° + 2y
by = XK B F (Y-Yp )2 + (2-2 P
A= WEX P+ (YY) + (22 F
ue = 3.986135x10"* m>/sec?®

L.89820x10*% m®/sec®
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Mg = 1.3253x102° ms/sec2
a = equatorial radius of the earth = 6.37826x10° m
J = 1.6246x107°

The terms involving only distances between the earth and moon or
earth and sun, such as meﬁ/Rm? arise from the fact that the coordinate
system is not inertial. These terms account for the accelerations of
the coordinate system with respect to inertial space.

The equations of motion for the vehicle are solved by means of a
Cowell "second-sum" method., A fourth order Runge-Kutta method is used
to start the integration and to change the step size during the flight.
The positions of the sun and moon are obtained by interpolation of data
from magnetic tape ephemerides. Within the sphere of influence of the
moon, a lunar radius of 66,000 km, the origin of coordinates is trans-
lated to the center of the moon. Since no rotation is performed, the
definitions of perturbations from the reference (see sppendix B) remain
the same.

Vo RS IR B -



29

APPENDIX B

CALCULATION OF TRANSITION AND PREDICTION MATRICES

The transition matrices used in the navigation system are obtained
by solving linear differential equations that represent perturbations
of the actual trajectory from the reference. These perturbation differ-
ential equations are derived as follows:

The nonlinear equations of motlon given in appendix A can be
written in the form

X=FR(X Y 7, t)
Y=7F(X, Y, Z, t) (BL)
Z=TFaX, Y, %, t)

It is desired to find linear differential equations for small deviations
from the reference. These equations may be found by expanding equations
(Bl) about the reference trajectory in a Taylor series and dropping all
terms except the first order.

_OF, 3F, JF,
= X + 3— dY + r &7

%E—ax+&—5Y+raz (B2)

OF, OF,
a—5x+w-a’r+5——5z

It is convenient to deal with systems of linear differential equa-
tions in multiple variasbles in matrix form. For this purpose it is
generally desirable to reduce the system to a set of first-order equa-
tions as follows.

Define
X, = & X4 = ak
xz = 8Y xg = 8Y (B3)
X3 = BZ Xg = 62



30

Then the system of perturbation equations can be written in matrix form
as

— = F(t)x (Bl4)

where F is a 6 X 6 matrix of coefficients and x is a 6 X 1 column
vector of the x; defined above. From equations (B2) and (B3), equation
(B4t) can be written as

- - - - ~ -—

x 0 0 0 1 0 0 x
1 1
%, 0 0 0 0 1 0 X,
X, 0 0 0 0 0 1 x
3

OF OF, OF

v = 1 1 1

Xa X N 3z © 0 Ol 1%, (B5)

. OF, OF, OF:
X5 X oY o7 © 0 0 %
. BFS an BFS o o 5 y
& ox oY oz &

Consider any system of homogeneous linear first-order differential
equations written in matrix form

dx _
T F(t)x (B6)

where I is an n X n matrix of time variant coefficients and x is
an n X 1 column vector of dependent variables. It is shown in
reference 4 that if U is a nonsingular matrix having n columns of
n linearly independent solutions of (B6), then U (defined as a
fundementel matrix) is a solution of

du _
7 - Feu (B7)

where U(to) is a constant matrix. As a special case @ 1is defined as
being the U obtained when U(to) is the unit matrix. Thus ¢ can be
obtained one column at a time if equation (B6) is solved n times, each
with a different member of x(t0> set equal to unity and all the other
members set equal to zero. Once & 1is obtained the solution of x(t)
for any given set of initial conditions x, 1is given by

\O W\
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x(t) = o(t)x, (B8)

The matrix &(t) represents the "transition" in the states of the system
of equations between time t, and t and may be written as ¢(t;to) to
indicate this fact. If equation (B5) is solved in this manner, the
resulting transition matrix relates deviations from the reference tra-
jectory at time t to the initial deviations at time t,. The tran-
sition matrix ®(t,;t;) between any two times on the reference trajectory
may be calculated in the same manner as &(t;ty).

The calculation is performed in the IBM TO4 simulation by solving
six sets of perturbation equations, each with & unit initial condition
on one of the x;, between succeeding times of observations. After
each observation the initial conditions are reset, to unity or =zero,
and the computation is carried out until the next observation. This
procedure was found to have certain practical advantages (discussed in
ref. 1) which might also apply to the computer on board the spaceship.

The prediction matrix, A(tg;tg), from the initial time to the time
at the end point typ 1is precalculated and stored in the computer. The
end point state can be calculated as

x(tg) = Altgste)x(ty) (B9)

Then if the transition matrix from time to to some intermediate time
tk is known

x(tx) = (g, to)x(t,) (BLO)
Combining (B9) and (B10O) gives
x(tg) = A(tEsty )0 (ty,tg )x(ty) (B11)

So the prediction matrix relating deviations at the end time to those at
some earlier time is

-1
Altgsty) = Altgstg)o™ (txsto)
or, in general,

Ko
Altgsty) = Altgito) IO (L5t )
1=1

The @(ti;ti_l) are computed for use in the optimal filter and it
will be shown that they can be inverted by simply rearranging terms with
some associated sign changes. Hence, by the use of a single stored
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matrix and a few matrix operations it is possible to compute the predic-
tion matrix at each observation time. It should be noted that when the
transition matrices are computed with the use of the estimated trajectory,
as was done in reference 1, errors will build up in the prediction matrix
due to the differences between estimated and reference trajectory. Such
errors could be reduced if the calculated prediction matrix were replaced
with the correct one stored at a few predetermined times along the
reference trajectory.

The inversion property mentioned above is derived here. If equation
(B8) is premultiplied by @-1(t)

Xo = o~ (t)x(t) (B12)

Tt can be seen from equation (Bl2) that & *(t) relates the set of devi-
ations at time t, which will produce unit deviations at time +t. For
the navigation problem it is desired to have the matrix which relates
unit deviations at time t +to the deviations at some end time tg;

that is, if ®(t) were computed backward in time from tg, its inverse
would be the desired prediction matrix.

Now consider the adjoint system of equations defined by

dA

= T
= F A (B13)

This system has a fundamental matrix A obtained in the same fashion as
®, and it is shown in reference U4 that

At) = o)
0-1(t) = AT(t) (B1k)

Hence the desired prediction matrix can be found when the adjoint sys-
tem is solved backward in time and the resulting transition matrix is
transposed. (This prediction matrix could then be stored at discrete
times and velocity corrections for intermediate times could be found by
interpolation. )

Equation (BS) can be written in partitioned form as

ol
-

>3 0 I

(B15)

=1

ny

X, F o

O\ e
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The definitions of >_cl, >_c2, and the submatrices of F can be seen from
comparison of equation (B1S) with (BS). Expanding (Bl5) gives

X, = X, (B16)

x, = Fx,; (B17)
or combining (Bl6) and (BlT7) gives

X, = B, (B18)

(Equation (B18) is identical with (B2) and is derived in this fashion
only to show correspondence with the adjoint system.) From equations
(B13) and (B15)

= - (B19)

where the ii are defined in the same fashion as the ;i~ Expanding
equation (Bl19) gives
o= FTA, (B20)

A, = =N (B21)

or combining (B20) and (B21) gives

(B2)
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The matrix f, however, 1is symmetricaf’ so that

.

A, = FA, (B23)

2

Thus equations (Bl18) and (B23) are identical in form, while equations
(B16) and (B2l) differ only in sign.

Assume that x,(ty) is set equal to unity, the other initial con-
ditions being zero, and equation (B18) is solved for x,, X5, Xz, and
their first derivatives. By letting x, = %X, X5 = X,, and Xg = X5 one

MThis property of symmetry is a result of the fact that the Fi of
the equations of motion (Bl) are the first partial derivatives of the
gravitational potential and are continuous in the region of interest;
that is,

_ oV
F, =X
¥
Fo = &Y
v
Fz = 5

where V¥ d1s the gravitational potential. Equation (B2) could therefore
be written as

" 0%y 3%y Py

X

° Sx2 ov ox >x oz | ¥
9 Fy Fy Fy

Y =
° dX dY dY° dZ dY oY
VA Fy Fy Fy 87

OX JZ Y 0Z 9z2

. J2 P
Since SY‘gX = X gY’ ete,, F = FT

\O T
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obtains the first column of the ¢ matrix. However, in solving equa-
tion (B18) with a unit initial condition on x, one also solves equa-
tion (B23) with a unit initial condition on K4, and by letting

A T =Ay, iz = -Ag, and Xs = ~-)Ag One obtains the fourth column in the
A matrix., Similarly, placing a positive unit initial condition on

kl, Xs, OT X5 (i.e., on x4, Xg, OT Xs) is equivalent to putting a nega-
tive unit initial condition on Ay, A5, Or Ag. If this analysis is
carried through completely, it 1s found that if A and ¢ are written
in partitioned form as

Al A2 o, ¢2
A= and o =
Ay Ny D3 D4
then
A o, 04 X

but from equation (Blk)

(D-l = AT
therefore
1 °4T _®2T
o = T o (B25)
-0 o,
and similarly
T T
A -Ag
KL= 4T (B26)
-Ag AlT

The above analysis applies equally well to the trajectories run
backward in time and for any initial and final times. Thus it is seen
that because of the symmetrical properties of the perturbation equations,
the transition matrix relating any two points on the trajectory can be
inverted in this manner. In fact, any set of linear first-order dif-
ferential equations which can be rewritten as a set of even order (i.e.,
second, fourth, etc.) equations with a symmetrical coefficient matrix
will exhibit this property.
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APPENDIX C

CALCULATION OF MEASURED ANGLES

As was mentioned in the description of the simulated system, it is
assumed that the vehicle contains a reference system alined with the
Cartesian coordinate system described in appendix A. The geometry of
the situation is illustrated in sketch (g). The direction of the line

EARTH
(0,0,0)

VEHICLE

(X.Y,2) —Y

i '

Sketch (g)

of sight is specified by the elevation angle Qg and the azimuth angle
Be. The subtended earth angle is 27,. The angle B, 1is assumed to be
measured counterclockwise from the vernal equinox (the X axis) and

0p 1is teken to be positive if the vehicle is below the equatorial plane.

The equations that relate the angles O, By, 8nd ye to vehicle
positions can be derived from sketch (g). They are:

O = -sin‘l(é%)

O Vi e
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B, = sin~t = = cos™1 X
Jx2 + Y2 .{X2 + Y2
a

Y. = sin™l =—

e R,

where a 1is the equatoriel radius of the earth and

R, = VX2 + Y2 + 77

A similar set of equetions can be derived for the case when the
moon is observed. With the notation of appendix A, these equations are:

A
Y, - Y
tan™i (ﬂl———>
X, - X
7p = sin™ %")

where a, 1s the radius of the moon, X , Y., and Z, are the coordinates
of the moon's position and

n

U

Fm

N N R W
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APPENDIX D

COMPUTATION OF STATISTICAL INFORMATION

It was stated in the text that statistical quantities of interest
could be computed for the entire ensemble of trajectories having certain
things in common in one run on the digital computer. From this statisti-
cal information one can determine the probability, or confidence factor,
of a randomly chosen member of the ensemble meeting desired conditionms,
The matrix equations used to compute most of this information are de-
rived below. It can be seen from the derivations that the accuracy with
which these statistical quantities represent the entire ensemble depends
on the validity of the linear perturbation equations discussed in
appendix B,

The matrix R is defined as being the covariance matrix of devia-
tions between the actual and reference trajectories. At injection, R
is the covariance matrix of injection errors and is assumed to be known.
By definition for any value of time

R = B(xxT) (D1)

where x 1is the deviation between actual and reference trajectories.
If x(t,) is known then

x(t, ) = o(t 5t0) x(to) (p2)

where o(t,;to) is the transition matrix between t, and to (see
appendix B). By substitution of equation (D2) into (D1)

R(t,) = B (s, 5t0) %(56) ¥(to) 0(t,3%0)" | (p3)

but ®(tl;to) is a constant matrix and may be removed from the brackets.,
As a result,

R(t,) = 0(ty580) E () xT(t0) 0(t; 50)T

8(t, 5t0) R(to) 0(t,5t0)T

or, in general,

R(tx) = O(ty;tyny JR(txoy )0 (tysty 1) (Dk)
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Equation (Di) is valid provided no velocity correction is made in the
time interval under consideration. The change in R due to a velocity
correction must be found if R 1is to be determined over the entire

trajectory.

The covariance matrix of errors in estimating the actual trajectory,
designated P, is identical with R before the first observation is
made. The computation of changes in P due to observations or velocity
corrections is presented in reference 1 and will not be reproduced here.
A knowledge of P 1is necessary for computing the effects of a velocity
correction on R and for that purpose it is assumed that P 1s known.

After a velocity correction the state vector, xo, of deviations
between the actual and reference trajectories is

XC=X+XG+XQ (D5>

Here xg 1is a 6 X 1 column vector whose three pgsition terms are zero
and whose velocity terms are the components of iG calculated in
equation (7). Similarly x, is a 6 X 1 vector haying zeros in the first
three terms and the components of a 3 X 1 vector, Xy, of errors in making
the velocity correction for the others. This notation can be used to
rewrite equation (7) as

0 0]

g = -

(D6)

23]

Azt A I

The zeros are 3 X 3 null matrices, I is a 3 X 3 unit matrix, and £ is
the 6 X 1 column vector of estimated deviations from the reference.

For convenience in writing let

0 0]
c=-1 (D7)
AZ" Ay I
After a velocity correction
R = E(x.xaT)

but

B(xox.T) = E Rx ok +xg) (T + #TeT + xQTﬂ (08)
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Since xpn is assumed to be uncorrelated with x or for different
times, E(%x T) (xeT) . With thls fact together with the identity
that for any vector, y, E(yyT) =E(yly) equation (D8) can be reduced to

E(xex,T) = R + E(xfTGT + 62xT + c&TaT) + 8, (D9)
where

= E(xqxqT) (D10)

It is shown in reference 2 that when X is defined by the expression

R=x+%x, E(XXT) =0, Thus,

B(#xT) = E(xxT)

Substituting X = x - X into the left side of the above equation gives

E(xxT) = B(xxT - xxT)
but
E(xXT) = EGET + #&T) = E(Z&T)
s0 that
E(x%T) = E(#&T) = r-P

where P 1is defined (as in ref, 1) as

= B(%xT)

Substituting into equation (D9) and collecting terms gives
E(xexeT) = (I+G)(R-P) (I +a)T+P+s (Dp11)

Equations (D4) and (D10) can be used to compute R for the entire
trajectory provided the covariance matrix, S, of errors in making
velocity corrections is known. The matrix S is computed on the basis
of the assumed velocity correction system described in the text, TFor
simplicity it 1s assumed that the reference system on board the vehicle
is alined with the geocentric Cartesian coordinate system used for the
equations of motion and described in appendix A. The azimuth angle, V¥,
and elevation angle, g8, of the thrust axis and the magnitude, u, of the
velocity increment are measured as described in the text., It is desired

(e R RV, I
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to compute a matrix, C, which transforms the errors in mechanizing V,
6, and u into errors in the Cartesian components of velocity. The
transformation takes the form

Xq ¢, %. cl:3 86
&Q S % %2 %s oV
EQ cgl (%e c du
or
Xq = CO (D12)

The components ia, &a: and ia of the velocity correction actually
applied are

Xg = u cos 6 cos ¥
Vg = u cos 6 sin ¥ (D13)
Zg = u sin 8

Equations (D13) are readily derived from
sketeh (h): The components of the matrix,
C, are found when the partial derivatives
of equations (D13) with respect to 8, ¥,
and u are taken,

T

The expected value of ﬁQﬁQ is
given by
- = T\ — T.T
E(Xq%q ) = B(CBEC) (D1k)

Sketch (h)

The components of C are substituted into (D14) and corrections in all
directions are assumed to be equally likely. When this assumption and the
one regarding the independence of errors in 6, Vy, and u are accounted for



ho

2 + 2) + 2 _ 2
[%m(% o ) Oﬁ] Vs % 0
E(YKT)=£ -v_0,2 v. (0,2 + g2)+ g2 o}
Qq n ms ¥ ms' 8 s u
2 + 2
i 0 0 EVmS(09 ) o ]
(D15)
where vpg = trace of E(ECE@T) computed before the velocity correction.
See equation (D19). By definition
[O }
Xn = |[=

Q XQ

where the zero represents a (3 X 1) null matrix.
Substituting in equation (D11) gives
0 0
S = (p16)
— >
O E(x.x
(5"

where the zeros represent 3 X 3 null matrices.

Once the value of R 1s known it can be used to compute the co-
variance matrix of the indicated velocity correction, E(xGiGT). From
equation (D6) and the definition of X

.= -(A7* A )%
G 2 1
so that
.'_ .._ T _ -1 AAT =1 T
E(xGxG )= (A Ay IE(RRT)(A, A, I) (p17)

but it was shown that

E(%%T) = (R-P) (D28)

\O Wt >
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so that

E(xgxcT) = (13 A, I)(R-PY(AZ &, I)T (D19)

The expression for E(fgig ) is a 3 x 3 covariance matrix and u%msr
its trace or sum of the diagonal terms, is the mean square indicated
velocity correction at the time the matrix is computed. To obtain the
mean square of the velocity which would actually be added, one must add
to vZpg the trace of S which is the mean square error in making a
correction,

The square root of the sum of the first three terms in the diagonal
of the P matrix gives the root-mean-square error, Tyms, 1in estimating
position, while the last three give the corresponding guantity, Grms’
for velocity. The root-mean-square deviations, r. . in position, and
Vypg in velocity, are obtained from R by the same procedure. The
remaining quantity presented in time history form is the rms position
prediction error. If xgp 1s the 3 X 1 column vector of errors in
predicting end point position, the covariance matrix of prediction
errors is E(XEPXEP).

From equation (2) it is seen that

xgp = (&) A)x (D20)
so that
E(xppiop) = (A A )BGET)(A, &) (p21)
but
B(xxT) = P
therefore
Blogprrs) = (A A)R(a, AT (pe2)

The root-mean-square error, Pyms, in predicting position is the square

root of the trace of the 3 X 3 matrix in (D22).
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The computation of the mms deviation in radius of perigee and
perilune given in table I is carried out at the time of reference peri-
apsis. The radius of periapsis of the actual trajectory is

Rp = R, (X,Y,2,X,Y,7) (pe3)

The gradient, , isa 6 X1 column vector of the partial derivatives.

The total differential may be written as

aR, = (VR,)Tax (D2k)

where dx 1is the column vector of differentials of the Cartesian posi-
tions and velocities. If r is defined as the vector difference
between the actual and reference periapsis vectors, it can be written
as

v, = (VR,)'x (pes)

The x here is the column vector of deviations between the actual and
reference trajectories, and equation (D25) depends for its validity on

the magnitude of x being relatively small. The variance of rp is

Ty = T T
E = E(VR VR
(rPrP) ( P) (xx )( P)
which reduces to

E(rprPT) = (VRP)TR(VRP)

\Xe V) RN, B -3
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(POSITION DEVIATION AT RANGE,R)?

104 RANGE OF MOON AT

TIME OF PERILUNE \

RETURN
/

0=
QUTBOUND —
-6
0 L [ |
50,000 150,000 250,000 350,000

RANGE FROM EARTH,R, KM

Figure 2.- Accuracy of linear prediction.
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Figure 3.- Comparison of statistical data and one member of ensemble.
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Figure 6.~ Root-mean~-square indicated velocity correction.
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Figure T.- Root-mean-square position deviation from reference trajectorye.
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Figure 8.- Root-mean-square velocity deviation from reference trajectory.
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